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ABSTRACT
In this paper, we study the task of cold-start sequential recommen-
dation, where new users with very short interaction sequences
come with time. We cast this problem as a few-shot learning prob-
lem and adopt a meta-learning approach to developing our solution.
For our task, a major obstacle of effective knowledge transfer that
is there exists significant characteristic divergence between old and
new interaction sequences for meta-learning.

To address the above issues, we purpose a Multimodal Meta-
Learning (denoted as MML) approach that incorporates multi-
modal side information of items (e.g., text and image) into the
meta-learning process, to stabilize and improve the meta-learning
process for cold-start sequential recommendation. In specific, we
design a group of multimodal meta-learners corresponding to each
kind of modality, where ID features are used to develop the main
meta-learner and the rest text and image features are used to develop
auxiliary meta-learners. Instead of simply combing the predictions
from different meta-learners, we design an adaptive, learnable fu-
sion layer to integrate the predictions based on different modalities.
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Meanwhile, we design a cold-start item embedding generator, which
utilize multimodal side information to warm up the ID embeddings
of new items. Extensive offline and online experiments demonstrate
that MML can significantly improve the recommendation perfor-
mance for cold-start users compared with baseline models. Our
code is released at https://github.com/RUCAIBox/MML.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
In e-commerce platforms such as Amazon and Meituan, there is
a large amount of sequential user behavior data, which contains
important evidence to infer the underlying user preference. To bet-
ter capture users’ behavioral characteristics, the task of sequential
recommendation [6, 16, 53] has been proposed and attracted sig-
nificant research interest in recent years, which aims to model the
user’s preference according to user’s historical interaction behav-
ior and predict the items that a user is likely to interact with [6].
However, due to the emergence of new users, existing sequential rec-
ommender systems usually suffer from the cold-start issue [14, 35].
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From the perspective of machine learning, cold-start recom-
mendation can be considered as a few-shot learning problem, i.e.,
predicting a user’s preferences by only a few past interacted items.
As a representative few-shot learning method, meta-learning has
been introduced to recommendation scenarios for addressing the
cold-start problem, showing promising results [4, 18] in recent
years. The basic idea of meta-learning is to learn global transferable
knowledge from existing tasks and then adapt such knowledge to
the similar new tasks. For cold-start recommendation, most of exist
meta-learning based methods [4, 18, 42] extend the model-agnostic
meta-learning (MAML) [7] approach and regard the recommen-
dation for each user as a task. These methods aim to learn global
parameters based on the interaction data of old users and initialize
the parameters of personalized recommender models for new users.

Specifically, for sequential recommendation, a major obstacle to
achieve effective knowledge transfer is the characteristic divergence
between the old and new interaction sequences, Firstly, compared
with old sequences, new interaction sequences are usually very
short, so the sequential characteristics (e.g., periodicity and transi-
tion patterns) might be quite different, causing the sequence-level
characteristic divergence. Secondly, as new user may interact with
some new items that have not been observed by old users, causing
the item-level characteristic divergence. Although existing methods
transfer ID-based sequential characteristics [14] or cluster similar
sequences based on item attributes [35] in meta-learning process,
it still lacks a comprehensive consideration about the two types of
characteristic divergence, thus leading to a limited or even negative
knowledge transfer in MAML [4, 54].

To motivate our solution, we observe an important phenomenon
in real online platforms: an item is usually associated with rich
multimodal side information, such as textual descriptions and prod-
uct photos. Our main idea is to utilize multimodal side information
to explore intrinsic item correlations and capture more essential
characteristics from interaction sequences. By conducting sequen-
tial learning from different perspectives (i.e., modalities), we aim to
devise a more stable meta-learning based approach to addressing
the cold-start issue for sequential recommendation. Based on such
an idea, the key lies in how to effectively reduce the characteristic
divergences between old and new sequence with multimodal side
information in meta-learning.

In this work, we present a Multimodal Meta-Learning (denoted
as MML) approach for cold-start sequential recommendation. The
key point of our approach is to incorporate multimodal side infor-
mation of items (i.e., text and image) into the meta-learning process
to alleviate the divergence between old and new tasks and improve
the effectiveness of knowledge transferred to cold-start users. To
reduce the aforementioned characteristic divergences, we design
a group of multimodal meta-learners (Figure 1(a)) corresponding
to each kind of modality, where ID features are used to develop
the main meta-learner and the rest text and image features are
used to develop auxiliary meta-learners. For the main meta-learner,
we further enhance the sequence representations by proposing a
feature-aware self-attention mechanism, which can inject atten-
tional bias based on multimodal correlations among items. Instead
of simply combing the predictions from different meta-learners,
we design an adaptive, learnable fusion layer to integrate the pre-
dictions based on different modalities. Similar to the ensemble of

meta-learners [28], our approach can stabilize the meta-learning
process and enhance the original ID-only sequence modeling. Be-
sides, we further design a cold-start ID generator (Figure 1(a)) to
warm up the ID embeddings of new items, so as to improve the
knowledge transfer to new items.

The main contribution of this work are threefold.
• Firstly, to the best of our knowledge, it is the first work
that incorporates multimodal side information into a meta-
learning framework for cold-start sequential recommenda-
tion, stabilizing and enhancing the meta-learning process.

• Secondly, we leverage multimodal side information of items
to alleviate the characteristic divergence between old and
new interaction sequences, which can improve the stability
and effectiveness of knowledge transfer.

• Thirdly, we conduct both offline evaluations on large datasets
and online A/B tests on the online platform Meituan to
demonstrate the effectiveness of our approach.

2 RELATEDWORK
In this section, we summarize the related work from three aspects,
including sequential recommendation, cold-start recommendation
and meta-learning for recommender system.

2.1 Sequential Recommendation
Early works on sequential recommendation mainly focus on mod-
elling sequential patternswith theMarkov Chain assumption. Based
on the last interaction of the user, MC-based approaches [31] calcu-
lated an item-item transition probability matrix and used it to fore-
cast the next item. In recent years, deep neural networks are intro-
duced to model the sequential patterns. Hidasi et al. [10] firstly uti-
lized gated recurrent units (GRU) to session-based recommendation,
and a number of variants followed this approach [11–13, 29, 30]. Be-
sides, some works utilize convolutional neural networks (CNN) [37]
and self attention networks (SAN) [16, 36] to capture the sequen-
tial patterns. As graph neural networks (GNN) gain popularity
recently, they are used to model complex item correlations [2, 43]
by transforming sequential data into graph-structured data. Despite
the success, existing approaches, aiming to improve overall perfor-
mance by sequence representation learning, have limited prediction
capability for cold-start users.

2.2 Cold-start Recommendation
Cold-start problem is one of the main challenges in recommender
systems. The common solution to this issue can be categorized
into two types, namely side information based and transfer learn-
ing based methods. The first type of methods aims to leverage
additional data resources to enhance the recommendation perfor-
mance. The traditional methods [26, 33, 38] mainly use user and
item attributes to augment the data. For example, LCE [33] exploits
items’ properties and past user preferences by a local collective
embedding learning method. Recent works introduce the binary
hash codes [8] and cross & compress unit [39] to leverage the side
information for cold-start scenarios. Another way to alleviate the
cold-start problem is to transfer knowledge from other domains.
These types of methods, such as cross-domain recommendation
methods [46], transfer learning methods [34, 45], and meta-learning
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methods [4, 18], regard the cold-start problem as a few-shot learn-
ing problem [41] and try to utilize the knowledge distilled from
other domains.

2.3 Meta-learning for Recommender System
Meta-learning, also known as learning to learn, aims to adapt to new
tasks quickly and effectively by leveraging prior knowledge gained
from previous tasks [7, 24]. In recent years, the idea ofmeta-learning
has been taken to solve the cold-start problems in recommendation
scenario. Most of them adopt optimization-based meta-learning
approach and choose model-agnostic meta-learning (MAML) [7]
for model training and gain great success in cold-start problem for
general recommendation model [4, 18, 21, 42, 47]. To utilize the
side information of users and items, some works try to combine the
information in heterogeneous information networks [23] or knowl-
edge graph [5] with MAML. There are also some meta-learning
methods purposed for cold-start problem in sequential recommen-
dation [14, 35, 40, 47, 51]. For example, Mecos [51] aims to deal
with the cold-start items in sequential recommendation, which ap-
plies a recurrent matching processor to match exist user with new
items. MetaTL [40] designs the meta transitional learner to model
the transition patterns of interaction sequences. metaCSR [14] pro-
poses a meta-learning based cold-start sequential recommendation
framework to solve the user’s cold-start recommendation problem.
CBML [35] designs a cluster-based meta-learning method to trans-
fer shared knowledge across similar session. Although existing
meta-learning methods achieve subtantial performance improve-
ment, they haven’t fully leverage rich side information to reduce
the task divergence. Different from existing methods, in this work,
we incorporate multimodal side information of items (e.g., text and
image) into the meta-learning process, in order to alleviate the the
characteristic divergence and improve the meta-learning process
for cold-start sequential recommendation.

3 PRELIMINARIES
In this section, we first formulate the task of cold-start user se-
quential recommendation and then introduce the meta-learning
approach for this task.

Cold-start user sequential recommendation. Given the user
set U = {𝑢} and item set I = {𝑖}, an interaction record between
user 𝑢 ∈ U and item 𝑖 ∈ I can be denoted as 𝑟 = ⟨𝑢, 𝑖𝑖𝑑 , 𝑖𝑡𝑒 , 𝑖𝑖𝑚⟩,
where 𝑖𝑖𝑑 is item ID, 𝑖𝑡𝑒𝑥𝑡 and 𝑖𝑖𝑚𝑔 are the text information and
image information (e.g., title and picture of item 𝑖), respectively.
Generally, the user 𝑢 has a chronologically-ordered interaction
sequence 𝑠𝑢 = {𝑟1, · · · , 𝑟𝑛}, where 𝑛 is the number of interactions
and 𝑟 𝑗 is the 𝑗-th interaction record. The interaction sequences
of all users constitute a sequence set S = {𝑠𝑢 | 𝑢 ∈ U}. In real-
world recommender systems, user interaction data aggregates over
time. Suppose we have already collected a set of interaction data
𝐷𝑜𝑙𝑑 = {U𝑜𝑙𝑑 ,I𝑜𝑙𝑑 ,S𝑜𝑙𝑑 } before a timestamp 𝑇 . For a new user
𝑢𝑛𝑒𝑤 ∉ U who comes after 𝑇 , our goal is to predict the next item
that 𝑢𝑛𝑒𝑤 is likely to interact with at the (𝑛 + 1)-th step based on
his/her limited historical behaviors 𝑠𝑛𝑒𝑤 = {𝑟1, · · · , 𝑟𝑛}. Note that
the 𝑠𝑛𝑒𝑤 is usually very short and may contain some new items
which are not in I𝑜𝑙𝑑 . We regard this kind of recommendation task
as cold-start user sequential recommendation.

Meta-learning settings. In this work, we extend the classic Model-
Agnostic Meta-Learning (MAML) [7] approach to cold-start sequen-
tial recommendation. The basic idea of MAML is to learn an initial
parameters Θ from previous tasks. Then, based on Θ, the model
can quickly adapt to a new task with limited training data. Fol-
lowing MAML, in our work, we consider the next-item prediction
task on each sequence as a single task. Specifically, the task goal
is to predict the last element (i.e., an interaction item) in each se-
quence based on all the previous elements. As for the dataset, the
dataset 𝐷𝑜𝑙𝑑 = {𝐷𝑆

𝑜𝑙𝑑
, 𝐷
𝑄

𝑜𝑙𝑑
} collected before 𝑇 will be used for

meta-training and the dataset 𝐷𝑛𝑒𝑤 = {𝐷𝑆𝑛𝑒𝑤 , 𝐷
𝑄
𝑛𝑒𝑤}, which con-

sists of new users’ sequences coming in after 𝑇 will be used for
evaluation in meta-testing phase. During the meta-training phase,
we use 𝐷𝑆

𝑜𝑙𝑑
for local update and 𝐷𝑄

𝑜𝑙𝑑
for global update; while

during the meta-testing process, we will firstly use 𝐷𝑆𝑛𝑒𝑤 for warm-
up training and then test the model performance on 𝐷𝑄𝑛𝑒𝑤 . For
𝐷𝑆
𝑜𝑙𝑑

/𝐷𝑄
𝑜𝑙𝑑

(𝐷𝑆𝑛𝑒𝑤/𝐷
𝑄
𝑛𝑒𝑤 ), superscripts 𝑆 and 𝑄 are used to denote

support and query sets, respectively.

4 APPROACH
In the section, we introduce the proposedMultimodalMeta-Learning
(MML) method for cold-start sequential recommendation.

4.1 Overview
Under the MAML framework, our proposed MML incorporates the
multimodal information (i.e., the associated text and image data)
into meta-learning process as a kind of auxiliary information to
reduce the task divergence and improve the effectiveness of knowl-
edge transfer across tasks. Specifically, we utilize the multimodal
information of items in two aspects. Firstly, in order to minimize the
divergence in sequential characteristics of old and new users, we
elaborately design a group of multimodal meta learners correspond-
ing to three different modalities (i.e., ID, text and image), which
can stabilize and improve the meta-training process by referring to
each other’s predictions. Secondly, considering the characteristic
divergence of new items, we design a cold-start item embedding
generator, which leverages the multimodal information to warm up
the ID embedding for new items. The overall architecture of MML
is illustrated in Figure 1(a).

In the rest of this section, we introduce our multimodal meta-
learner group, which consists of three Transformer-based meta-
learners in Section 4.2. Then in Section 4.3, we present the archi-
tecture of cold-start item embedding generator. Finally, we will
introduce the training strategy of MML in Section 4.4.

4.2 Multimodal Meta-learner Group
To better model the sequential correlations among items in differ-
ent modalities, based on the Transformer-based sequential model
SASRec [16], we design a multimodal meta-learner group which
consists of three meta-learners to model the interaction sequence
in multiple aspects. Specifically, as shown in Figure 1(a), for an
multimodal interaction sequence, we design a main meta-learner
with feature-aware self-attention networks (SANs) for ID sequence
and two auxiliary meta-learners with vanilla SANs for text and
image sequences. And finally, we integrate the prediction result of
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(a) The overall architecture of MML. (b) The training strategy of MML.

Figure 1: The overall architecture and training strategy of MML.

three meta-learners by an attention-based fusion layer. Next, we
will discuss the implementation of each part in detail.

4.2.1 Main Meta-Learner. On the basis of SASRec, we adopt the
main meta-learner to model the ID sequence, consisting of three
layers: embedding layer, feature-aware self-attention block and
prediction layer.

Embedding layer. Given a 𝑛-length item sequence, we maintain
an item embedding matrix M𝑖𝑑 ∈ R | I |×𝑑 and apply a look-up
operation to obtain the ID embedding sequence E𝑖𝑑 ∈ R𝑛×𝑑 . Dif-
ferent from SASRec, the main meta-learner also utilizes text and
image information of items to enhance sequence representations.
For this purpose, we adopt two pretrained encoders (BERT [3] and
ResNet [9]) to obtain the text representation E𝑡𝑒 ∈ R𝑛×𝑑 and image
representation E𝑖𝑚 ∈ R𝑛×𝑑 of the input sequence.

Feature-aware self-attention block. In order to better model
the sequential characteristics of user behaviors, we explore mul-
timodal side information to capture intrinsic correlations among
items. Intuitively, users might tend to interact with items having
similar side information. However, the vanilla SANs in SASRec
can’t model the side information of items. To guide the learning
of attention scores, we propose a feature-aware self-attention layer
by incorporating text and image information of items through the
attentional bias [19, 20]. Specifically, we implement the feature-
aware self-attention layer with multi-head attention mechanisms

as follows:

H𝑙 = [ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ..., ℎ𝑒𝑎𝑑ℎ]W𝑂 , (1)

ℎ𝑒𝑎𝑑𝑖 = FATT(F𝑙W𝑄

𝑖
, F𝑙W𝐾

𝑖 , F
𝑙W𝑉

𝑖 ,B𝑓W
𝐵
𝑖 ), (2)

B𝑓 = (E𝑡𝑒E⊤𝑡𝑒 ) ⊙ W𝑡𝑒 + (E𝑖𝑚E⊤𝑖𝑚) ⊙ W𝑖𝑚, (3)

where the F𝑙 is the input for the 𝑙-th layer (when 𝑙 = 0, we set F0 =
E𝑖𝑑 ), B𝑓 is the attention bias derived according to the multimodal
side information, and the projection matrixW𝑄

𝑖
∈ R𝑑×𝑑/ℎ ,W𝐾

𝑖
∈

R𝑑×𝑑/ℎ , W𝑄

𝑖
∈ R𝑑×𝑑/ℎ , W𝐵

𝑖
∈ R𝑑×𝑑/ℎ , W𝑡𝑒 ∈ R𝑛×𝑛 , W𝑖𝑚 ∈

R𝑛×𝑛 andW𝑂 ∈ R𝑑×𝑑 are the corresponding learnable parameters
for each attention head. The feature-aware attention function is
implemented by scaled dot-product operation:

FATT(Q,K,V,B) = softmax(QK
⊤ + B√︁
𝑑/ℎ

)V, (4)

where Q, K and V respectively denote the queries, keys, and values
of items in the sequence same as the vanilla SANs, and B is the
attention bias (Eq. 3) and the

√︁
𝑑/ℎ is the scale factor to avoid large

values of the inner product. Here, we learnmultimodal feature-level
correlations for better capturing item-level correlations.

After performing multi-head self-attention, we further apply
a point-wise feed-forward network on H𝑙 to model interactions
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between different latent dimensions as follows:

F𝑙+1 = [FFN(H𝑙1)
⊤; · · · ; FFN(H𝑙𝑛)⊤], (5)

FFN(𝑥) = (ReLU(𝑥W1 + b1))W2 + b2, (6)

whereW1 ∈ R𝑑×𝑑 ,W2 ∈ R𝑑×𝑑 , b1 ∈ R𝑑 and b2 ∈ R𝑑 are trainable
parameters.

Prediction layer. After 𝐿-layer self-attention blocks, in the final
layer, we estimate the user’s preference score P𝑖𝑑 (𝑡 + 1) for 𝑐 candi-
date items based on user’s interaction sequence as follows:

p𝑖𝑑 = [𝑝1; · · · ;𝑝𝑐 ], (7)

𝑝𝑖 = e⊤
𝑖𝑑
F𝐿, (8)

where e𝑖𝑑 is the ID representation of item 𝑖 from item embedding
matrix M𝐼 , F𝐿 is the output of the 𝐿-layer self-attention block and
𝐿 is the number of self-attention blocks.

4.2.2 Auxiliary Meta-learner. In the above main meta-learner, we
utilize multimodal data as auxiliary information to enhance the
learning of sequential characteristics in terms of ID features. While,
intuitively, the interaction sequence is likely to reflect some specific
kind of correlation patterns from a single modality (either text or
image). In order to better stabilize and improve the learning of main
meta-learner, we further design two auxiliary meta-learners for
the two modalities, respectively. Unlike main meta-learner, aux-
iliary meta-learners adopt vanilla self-attention function with the
pretrained encoders (BERT for text and ResNet for image), and we
can compute the preference scores p𝑡𝑒 and p𝑖𝑚 for 𝑐 candidate
items from two auxiliary meta-learners respectively.

4.2.3 Multimodal Prediction Fusion. Given the group of multi-
modal meta-learners, we design an attention-based fusion layer to
integrate their predictions to generate more reliable predictions.
Specifically, we firstly apply the layer normalization [1] on the
preference scores of 𝑐 candidate items and the output of the 𝐿-layer
self-attention blocks from three meta-learners:

P′ = 𝐿𝑁 ( [p𝑖𝑑⊤;p𝑡𝑒⊤;p𝑖𝑚⊤]), (9)

F = 𝐿𝑁 ( [F𝐿
𝑖𝑑

⊤; F𝐿𝑡𝑒
⊤; F𝐿𝑖𝑚

⊤]), (10)

where P′ ∈ R3×𝑐 and F ∈ R3×𝑛𝑑 . And then, we apply the atten-
tion function which is implemented by a single-layer feed-forward
neural network, parameterized by a weight matrix W𝑎𝑡𝑡 and a
bias vector b𝑎𝑡𝑡 , and the ReLU non-linearity. Besides, we apply
the softmax normalization to make coefficients easily comparable
across different modalities calculate the attention score A ∈ R1×3
as follow:

A = Softmax(Att(FW + b)), (11)
𝐴𝑇𝑇 (𝑥) = ReLU(𝑥)W𝑎𝑡𝑡 + b𝑎𝑡𝑡 , (12)

where W and b is the parameters of liner projection.
Finally, we can calculate the prediction scores p ∈ R𝑐 of all the

candidate items given sequence 𝑠 = {𝑟1, · · · , 𝑟𝑡 } as:
p = AP′ . (13)

Recent studies have shown that meta-learning is likely to be
unstable and produce unreliable predictions [44, 54], especially with
limited training data. Similar to the meta-learner ensemble [28],

we set up multimodal meta-learners and sufficiently fuse their
predictions, which can help stabilize the learning of meta-learners.
Instead of simply combining the prediction results, our approach
lets the model learn how to select and fuse the predictions from
different meta-learners. In the above approach, multimodal side
information has been utilized in two ways: (1) the enhancement
of sequence representations in the main meta-learner and (2) the
learning of the auxiliary meta-learner.

4.3 Cold-start Item Embedding Generator
Besides sequential characteristics, there also exists divergence be-
tween old and new items, where new item IDs don’t appear in cold
user sequences, called cold-start items. Compared with the well-
trained item embeddings in old sequences, the randomly generated
ID embeddings of these cold-start items have negative impact on
knowledge transfer to new sequences. Considering this issue, we
further propose a cold-start item embedding generator to warm
up item ID embeddings in new user’ sequences by leveraging the
multimodal information. Although there have been some studies on
the cold-start embedding warm-up [25, 27], considering the model
complexity, we design a simple yet effective attention network as
the generator to address this problem.

As shown in Figure 1(a), given a ID sequence of new user, we
firstly apply a look-up operation on M𝑖𝑑 to identify the new items,
then ignore the old items and generate the warm-up embedding for
each new item only. Given a new item 𝑧 and the representations of
its text information etxt𝑧 and image information eimg

𝑧 , we select the
top 𝐾 most similar old items 𝑂 = {𝑜} according to the following
similarity function:

𝑞𝑧,𝑜 =

∑
𝑚 cosine(e𝑚𝑧 , e𝑚𝑜 )

|M| , (14)

where 𝑞𝑧,𝑜 is the similarity score of 𝑜 , and 𝑚 ∈ M = {txt, img}
is the modality set. Then we apply the attention mechanism to
calculate the attention weight for each old item 𝑜 ∈ 𝑂 w.r.t. 𝑧:

𝑎𝑚𝑜 =
exp(W𝑚

1 [Y𝑚e𝑚𝑧 | |Y𝑚e𝑚𝑜 ])∑𝐾
𝑗=1 exp(W𝑚

1 [Y𝑚e𝑚𝑧 | |Y𝑚e𝑚
𝑗
])
, (15)

where𝑊𝑚
1 and 𝑌𝑚 are the weight parameters of liner projection

in modality𝑚, 𝑒𝑚𝑜 is the side information of 𝑜 in modality𝑚.
Furthermore, we generate the embedding from different modali-

ties by the side information of 𝑜 ∈ 𝑂 and 𝑧 :

g𝑚𝑧 = ReLU(Y𝑚e𝑚𝑧 +
𝐾∑︁
𝑜=1

𝑎𝑚𝑜 Y𝑚e𝑚𝑜 ), (16)

where 𝑔𝑚𝑧 is the embedding generated by side information in modal-
ity𝑚. Finally, we combine the generated embeddings in different
modalities as:

e𝑖𝑑𝑧 =
1

|M|
∑︁

g𝑚𝑧 , (17)

4.4 The Training Algorithm of MML
To achieve fast adaption to cold-start users with insufficient data,
we extend MAML [7] to our scenario and design a three-stage
algorithm to train the meta-learners, the embedding generator and
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the prediction fusion layer in turn as shown in Figure 1(b). Next,
we will introduce our training algorithm in detail.

4.4.1 Data Preparation. As mentioned in Section 3, we regard the
next-item prediction task on each sequence as a task and utilize
the 𝐷𝑜𝑙𝑑 and 𝐷𝑛𝑒𝑤 as the training data and test data respectively.
For 𝐷𝑜𝑙𝑑 , we apply the data augmentation strategy on each se-
quence and split it into the query set and support set. Specifically,
for each user 𝑢, we firstly employ data augmentation on his/her
interaction sequence 𝑠𝑢 = {𝑟1, · · · , 𝑟𝑛} following previous meth-
ods [22, 53] (e.g., a sequence (𝑟1, 𝑟2, 𝑟3, 𝑟4) is divided into three
successive sequences: ⟨𝑟1, 𝑟2⟩, ⟨𝑟1, 𝑟2, 𝑟3⟩, ⟨𝑟1, 𝑟2, 𝑟3, 𝑟4⟩), then these
sequences will be split into two sets. The first 𝑛 − 1 sequences form
the support set 𝐷𝑆𝑢 and the 𝑛-th sequence forms the query set 𝐷𝑄𝑢 .

4.4.2 Training Procedure. Our training procedure is descried in
the following three stages:

Stage 1: training the meta-learners. Firstly, we train the three
meta-learners on the 𝐷𝑜𝑙𝑑 with the same task (i.e., the next-item
prediction task), which aims to predict the last item in each sequence
based on all the previous items. For the sake of notation simplicity,
we denote all the trainable parameters in embedding layer as Γ
and the trainable parameters in self-attention blocks and prediction
layer as Θ. Following the MAML [7], there are two steps in meta-
training, i.e., local update and global update. During local update,
we update the Θ on each sequence 𝑏 in the batch 𝐵 by minimizing
the BPR loss [32] on the support set 𝐷𝑆

𝑏
:

Θ𝑏 = Θ − 𝛼∇Θ𝑏𝐿𝑜𝑠𝑠 (𝐷𝑆𝑏 ;Θ
𝑏 ), (18)

where Θ is the global parameter, Θ𝑏 is the local parameter learned
via sequence 𝑏 and 𝛼 is the learning rate. Following [18], we don’t
update Γ in local update to ensure the stability of training process.
During global update, we update the global parameter Γ and Θ on
the query set 𝐷𝑄 by one gradient step on the sum of all the losses:

Θ = Θ − 𝛽
∑︁
𝑏∈𝐵

∇Θ𝐿𝑜𝑠𝑠 (𝐷𝑄𝑏 ;Θ
𝑏 ), (19)

Γ = Γ − 𝛽
∑︁
𝑏∈𝐵

∇Γ𝐿𝑜𝑠𝑠 (𝐷𝑄𝑏 ;Θ
𝑏 ), (20)

where 𝛽 is the learning rate. The three meta-learners follow the
same meta-training process.

Stage 2: training the item embedding generator. Based on the
trained main meta-learner in Stage 1, we train the cold-start item
embedding generator with training data 𝐷𝑜𝑙𝑑 . As mentioned in 4.3,
the goal of the generator is to warm up the ID embeddings for cold-
start items. Since all the items in training data are old items (their ID
embeddings are trained in meta-learning process), to simulate the
cold-start situation, for each sequence 𝑠𝑖𝑑 in𝐷𝑜𝑙𝑑 , we will randomly
“forget” some items’ embedding in 𝑠𝑖𝑑 according to a proportion
of 𝑝0, and regard them as the new items. And then, we fix all the
parameters in main meta-learner and train the generator based on
the recommendation loss on 𝑠𝑖𝑑 . Here we choose the BPR loss [32]
as the recommendation loss.

Stage 3: training the prediction fusion layer. Based on the
trained meta-learners and the cold-start ID embedding generator,
finally, we train the prediction fusion layer. Similar to Stage 2, we

Table 1: Statistics of our datasets.

Dataset Type #User #Item #Inter #Inter/User

Shanghai
Training set 18,055 81,765 463,335 25.6624
Test set 1,448 81,765 14,616 10.0939

Hangzhou
Training set 10,861 50,777 279,865 25.7679
Test set 972 50,777 10,408 10.7078

Changsha
Training set 9,209 40,519 258,902 28.1140
Test set 943 40,519 9,530 10.1060

sample some of the items as new items to simulate the cold-start
situation, and then fix the parameters of all the other modules and
train the fusion layer only. The training task in Stage 3 remains
the next-item prediction. Here we set the cross entropy loss for
parameter update.

4.5 Time Complexity Analysis
For recommendation algorithms, inference time is more important
to consider than training time. Next, we analyze the complexity
of the inference time with our approach MML. Overall, for each
request (i.e., the recommendation to a user), the inference time
cost of MML mainly comes from three parts, i.e., the cold-start
item embedding generator, three meta-learners and the prediction
fusion layer. To predict the next item for a new user’ interaction
sequence, we firstly utilize the cold-start item embedding generator
to warm up the ID embedding of new items, in which we use the
Faiss [15] toolkit to retrieve the top-𝐾 nearest neighbors, and then
we generate the embedding for cold-start items based on their
neighbors. Considering the complexity of such a retrieval process
in Faiss is sublinear, we can omit the cost of neighbors retrieval and
the time complexity of this part is𝑂 (𝑛𝐾𝑑) (𝑛-length sequences). As
for the meta-learners, we will calculate the self-attention matrices
for the sequence for three modalities in parallel, and the complexity
of this part is𝑂 (𝑛2𝑑𝐿) (𝐿 layers). Finally, we combine the prediction
from three meta-learners via the prediction fusion layer. We need to
calculate the attention scores for each modality and obtain the final
prediction by the attentional sum, which leads to a time complexity
of 𝑂 (𝑛𝑑ℎ + 𝑐), where ℎ is the hidden layer size and 𝑐 is the number
of candidate items.

As 𝐾 and ℎ are often small, thus, the total time complexity of the
MML can be roughly written as 𝑂 (𝑛2𝑑𝐿 + 𝑐). Such a process can
be also further accelerated by parallel computing resources, which
is acceptable in real-world online platform.

5 EXPERIMENT
We conduct experiments to answer the following questions:
• RQ1: How is the performance of MML compared with competi-
tive baselines in offline evaluation?
• RQ2: How is the performance of MML in online deployment
under real-world performance metrics?
• RQ3:What is the effect of different components of MML on its
effectiveness?
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Table 2: The overall performance. The best result is bolded and the runner-up is underlined. ∗ indicates the statistical
significance for 𝑝 < 0.01 compared to the best baseline. The Impro. shows the improvement ratio of MML compared
with the runner-up.

Dataset Metric Non-transfer based Transfer based Ours
SASRec GRU4Rec Full SML PT-FT CBML MML Impro.

Shanghai

Recall@5 0.0925 0.0414 0.1174 0.1221 0.1360 0.2183 0.2209 +1.19%
Recall@10 0.1153 0.0656 0.1533 0.1547 0.1547 0.2527 0.2570 +1.70%
Recall@20 0.1478 0.0822 0.1899 0.2007 0.1637 0.2661 0.2690 +1.09%
MRR@5 0.0678 0.0297 0.0820 0.0766 0.0790 0.0790 0.0978 +19.27%
MRR@10 0.0708 0.0330 0.0867 0.0853 0.0815 0.0826 0.1016 +17.19%
MRR@20 0.0729 0.0342 0.0893 0.0899 0.0822 0.0835 0.1025 +14.02%
NDCG@5 0.0739 0.0327 0.0908 0.0977 0.0933 0.1138 0.1287 +13.09%
NDCG@10 0.0811 0.0405 0.1024 0.1021 0.0993 0.1240 0.1394 +12.42%
NDCG@20 0.0893 0.0447 0.1116 0.1088 0.1017 0.1274 0.1423 +11.70%

Hangzhou

Recall@5 0.0813 0.0134 0.0926 0.1223 0.1224 0.0918 0.1910 +56.05%
Recall@10 0.1049 0.0226 0.1296 0.1558 0.1718 0.2833 0.2960 +4.48%
Recall@20 0.1358 0.0453 0.1656 0.1766 0.1924 0.2890 0.2986 +3.32%
MRR@5 0.0569 0.0076 0.0648 0.0599 0.0751 0.0874 0.1135 +29.86%
MRR@10 0.0600 0.0089 0.0698 0.0768 0.0816 0.1111 0.1264 +13.77%
MRR@20 0.0620 0.0104 0.0723 0.0785 0.0830 0.1115 0.1266 +13.54%
NDCG@5 0.0629 0.0090 0.0717 0.0876 0.0868 0.0885 0.1317 +48.81%
NDCG@10 0.0705 0.0121 0.0837 0.0988 0.1027 0.1487 0.1646 +10.69%
NDCG@20 0.0782 0.0178 0.0928 0.0895 0.1079 0.1501 0.1653 +10.13%

Changsha

Recall@5 0.0954 0.0350 0.1060 0.1355 0.1029 0.1420 0.1555 +9.54%
Recall@10 0.1145 0.0626 0.1495 0.1562 0.1548 0.1502 0.1657 +6.08%
Recall@20 0.1410 0.0901 0.1845 0.1744 0.1888 0.1570 0.1956 +3.60%
MRR@5 0.0622 0.0194 0.0715 0.0866 0.0666 0.1343 0.1460 +8.71%
MRR@10 0.0646 0.0228 0.0771 0.0895 0.0738 0.1354 0.1473 +8.79%
MRR@20 0.0664 0.0245 0.0795 0.0911 0.0761 0.1359 0.1488 +9.49%
NDCG@5 0.0705 0.0232 0.0800 0.0988 0.0756 0.1362 0.1483 +8.88%
NDCG@10 0.0765 0.0319 0.0939 0.1088 0.0926 0.1389 0.1516 +9.14%
NDCG@20 0.0832 0.0386 0.1027 0.1158 0.1012 0.1406 0.1557 +10.74%

•RQ4:How is the performance of MML with limited training data?

In this section, we first present experimental settings, followed by
results and analyses to answer each research question. We conduct
our experiments based on the framework of RecBole [49, 50] and
our code is released at https://github.com/RUCAIBox/MML.

5.1 Experimental Settings
5.1.1 Datasets. We conduct the offline experiments on three rec-
ommendation datasets collected from the large-scale and real-world
click logs covering meals, hotel, tourism and other 6 businesses
in Meituan1 App from June to October 2021. In order to obtain
the multimodal information, we crawl the textual title and product
photo of each item in our dataset. The three datasets are collected
from three different cities: Shanghai, Hangzhou and Changsha. We
split the datasets into two parts: training set and test set. To sim-
ulate the cold-start scenario, we set a reference timestamp 𝑇 as
September 10, 2021. All the interactions before 𝑇 will be selected
into training set 𝐷𝑜𝑙𝑑 , and users in 𝐷𝑜𝑙𝑑 will be considered as old

1https://www.meituan.com

users. The rest of users will be considered as new users, and the
interactions of these users are considered as test set 𝐷𝑛𝑒𝑤 . The
details of the data statistics are shown in Table 1.

5.1.2 Baselines. We compared the proposed MML method with
two categories of recommendation methods: non-transfer based
methods and transfer basedmethods, which either directly train
the model based on entire training dataset or utilize some kind of
knowledge transfer techniques. Here we select three non-transfer
based methods as follows:

• SASRec [16]: It is the base recommendation modal of MML,
which adapts the Transformer architecture for recommending
the next item.

• GRU4Rec [10]: It utilizes the GRU network to model user click
sequences for session-based recommendation. We represent the
items using embedding vectors rather than one-hot vectors.

• Full Retrain: It is a model retraining baseline purposed in [47],
the idea is to combine the training data of old and new users
together to train the model, and then evaluate the performance
only on the test data of new users.
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Besides, we select three transfer based methods as the baselines.
Similar to MML, the transfer based methods will design specific
knowledge transfer strategy on the training set and then help the
model quickly adapt to test set.

• SML [47]: SML is a meta-learning based method for model re-
training, which can also be used in our scenario. Specifically,
we firstly train a recommender model on the data of old users
and retrain this model on the new collected data of new users
following the SML method.

• Pre-train and Fine-tune (PT-FT): It is a widely used baseline
for knowledge transfer [35, 47]. Different from meta-learning
approach, this method trains the model in a multi-task learning
manner. For fair comparison, we keep the same model struc-
ture with our MML and apply PT-FT method for model training.
Specifically, we pretrain the model on the training set, save the
best weights and then fine-tune on the support set of each cold-
start user in test set, and evaluate the performance on the query
set of each cold-start user.

• CBML [35]: Similar to our method, this method also focuses
on the cold-start sequential recommendation and proposes a
clustering-based meta-learning model, which clusters the similar
sequences based on item attributes. In our dataset, we apply the
item category as the item attributes to evaluate the performance
of CBML.

5.1.3 Hyper-parameter Tuning. For fair comparison, we set the
training batch size as 2048 and embedding size as 64 for all the
comparison methods. For each non-transfer based method, we tune
the learning rate in {1e-2, 7e-3, 5e-3, 3e-3, 2e-3, 1e-3} for the superior
performance. For all the meta-learning based methods, we set the
training epoch as 10. The number of local update in each training
epoch is set as 5. We fix the local learning rate 𝛼 as 1e-3 and tune the
learning rate 𝛽 of global update in {1e-4, 3e-4, 5e-4, 7e-4, 1e-3}. For
our MML method, we set the hidden size as 128 in prediction fusion
layer, and we select 5e-4, 1e-3 and 1e-3 as the learning rate 𝛽 of
global update for Shanghai, Hangzhou and Changsha respectively.
All the other hyper-parameters of baselines are tuned following
the suggestions in the original papers.

5.2 Offline Evaluation (RQ1)
To verify the effectiveness of our method, we evaluate the perfor-
mance of MML with other baselines on the three collected datasets,
i.e., Shanghai, Hangzhou and Changsha datasets.

5.2.1 Evaluation Metrics. For evaluation metrics, we adopt three
widely used metrics of top-𝐾 recommendation to evaluate the rank-
ing list of recommendations: Recall@K, Normalized Discounted Cu-
mulative Gain (NDCG@K) andMean Reciprocal Rank (MRR@K) (𝐾 ∈
{5, 10, 20}). Since the sampled metrics may be unreliable [17, 48],
we generate the ranking list for each user by considering all the
items and calculate the metrics based on the ranking of all the can-
didate items. The listed results are averaged over all test users and
all the metrics are calculated on the query set of cold-start users.

5.2.2 Experimental result. The experimental results on the three
datasets are reported in Table 2, and we have the following impor-
tant observations:

Table 3: The result of A/B test in online scenario. The im-
provement is calculated under the statistical significance for
𝑝 < 0.05 compared to the baseline.

Method CTR CVR New Pay

MML +1.212% +1.203% +2.362%

1) As shown in all three datasets, the proposed model MML
observably outperforms all the other baselines by large margin,
including the strong meta-learning based baseline CBML, which
shows the effectiveness of the proposed multimodal meta-learning
approach. Compared with CBML, MML has two major merits in
cold-start sequential recommendation. First, instead of simply lever-
aging the coarse-grain item attributes like item category, we design
a more principled approach to leveraging multimodal side informa-
tion, which can stabilized and improve the meta-learning process.
Second, we have considered addressed the characteristic divergence
at both item and sequence levels, thus leading to a better recom-
mendation performance for cold-start users.

2) In all the datasets, simply training a deep recommender only
on the support set of a cold-start user impairs the performance se-
verely, since the support set only contains very limited interaction
data. Among these baselines, the pre-train and fine-tune (PT-FT)
method gains more improvement compared with no-transfer base-
lines, because PT-FT can leverage the knowledge learned from old
users. However, we find the effective meta-learning strategy can
further improve the recommendation performance, which is spe-
cially designed for fast adaption given limited data, indicating the
importance of meta-learning algorithms in this test scenario.

5.3 Online A/B Tests (RQ2)
To further examine the performance of MML in real-world applica-
tion scenarios, we conduct an online A/B test through the function
labeled by “Guess you like” in Meituan App.

5.3.1 Evaluation Setup. Since the function “Guess you like” pro-
vides the recommendation service to all the Meituan users, we
sample a traffic of nearly 17 million users for online evaluation. It
is originally implemented based on a classic industrial implementa-
tion of multi-stage ranking systems, and we deploy the proposed
MML approach as a new retrieval strategy in the recall module. For
the sampled test users, following a standard setup for A/B test, we
divide them into two groups: one with the original recall module
and the other one with the improved recall module by our MML
approach. For evaluation metrics, following [52], we adopt two
widely used performance measurements CTR (Click-Through-Rate)
and CVR (Click Conversion Rate). Besides, we also calculate the
number of orders for new users, who have no order record in the
past year, denoted as New Pay. For company privacy, we don’t re-
port the implementation details of the original recall module and
the real performance. Instead, we report the performance gain ratio
improved by our approach MML.

5.3.2 Experiment Result. The results of online A/B test are shown
in Table 3. From the table, we can find that:
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Table 4: The result of ablation study.

Method Shanghai Hangzhou
MRR@10 NDCG@10 MRR@10 NDCG@10

No-Gen 0.0935 0.1150 0.0877 0.1090
No-Fusion 0.0934 0.1130 0.0888 0.1097
MML𝐼𝐷 0.0959 0.1169 0.0911 0.1126
MML 0.1016 0.1394 0.1264 0.1646

1) MML outperforms the online baseline on all the three metrics,
which indicates that MML is capable of improving the effectiveness
of cold-start recommendation on Meituan App. It is worth noting
that the improvement ratios in Table 3 is significant after deploying
the MML approach: one percent usually indicates a large improve-
ment of the recommendation capacity in real-world application
scenario, when tested on a large population of users.

2) Besides the click-based metrics of CTR and CVR, MML also
leads to direct performance improvement based on the New Pay
metric. This improvement demonstrates that the proposed MML
can bring positive impact to the underlying recommender system,
leading to more purchases from new users who have not paid before.

5.4 Ablation Study (RQ3)
Since our MML approach contains several important technical im-
provements, here we analyze their contribution to the recommen-
dation performance by removing each one while keeping the rest.
In particular, we consider the following two variants by ablating
the ID embedding generator or the prediction fusion layer:
• NO-Gen: A variant of MML which replaces the item embedding
generator by randomly generated embeddings for new items.

• NO-Fusion: A variant of MML which replaces the knowledge
fusion layer by an average fusion for three meta-learners.

Besides, we also prepare an ID-only version for our MML approach
in order to examine the effect of multimodal side information, de-
noted by MML𝐼𝐷 .

As shown in Table 4, we conduct the ablation experiments on the
two datasets (i.e., Shanghai and Hangzhou), and then evaluate the
performance by MRR@10 and NDCG@10. From this table, we can
observe that removing any one component from the MML approach
will lead to a performance decrease. Such a finding shows that
both components are important to improve the recommendation
performance for cold-start users. Besides, we find that MML𝐼𝐷
also performs worse than the complete MML approach. It indicates
that multimodal side information is indeed useful to boost the
performance of our approach.

5.5 Influence Analysis of Training Data (RQ4)
A major advantage of meta-learning based methods is that they
perform well under the few-shot setting [7]. Here, to examine the
robustness of MML in few-shot scenarios, we conduct a specific
experiment by varying the scale of the training data and evaluate
the performance of MML on the test set, which will be fixed in this
experiment. For comparison, we select the competitive baseline
PT-FT for performance reference.

As shown in Figure 2, we report the performance of MML and
PT-FT on the Hangzhou dataset with different sampling ratios.
Here, we adopt Recall@10 (left subfigure) and Recall@20 (right
subfigure) as the evaluation metrics. With the reduction of training
data, the performance of bothMML and PT-FT decrease accordingly.
However, the performance of MML seems to be more stable than
PT-FT and outperforms PT-FT in all the cases. The result shows our
MML is more robust and can perform well even with very limited
training data.
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Figure 2: Performance of recommendation with different
scale of training data.

6 CONCLUSION
In this paper, we presented the Multimodal Meta-Learning (de-
noted asMML) approach by leveragingmultimodal side information
of items for cold-start sequential recommendation. We designed
modality-specific meta-learner to capture the sequential character-
istics from different perspectives (i.e., modalities), and adaptively
integrated their predictions with a learnable fusion layer. These
meta-learners can effectively reduce sequence-level divergence be-
tween old and new interaction sequences. Besides, we also designed
a cold-start item embedding generator to warm up ID embeddings
of new items. Our approach effectively reduced the characteristic
divergence at both the item and sequence levels. Extensive experi-
mental results show that the proposed MML outperforms several
competitive baselines in both offline and online evaluation, lead-
ing to direct performance improvement after being deployed on
Meituan App. To the best of our knowledge, it is the first time that
multimodal side information of items have been leveraged to im-
prove the meta-learning for cold-start sequential recommendation.

As future work, we will further consider extending our frame-
work to other recommendation scenarios, such as cross-domain
recommendation. Besides, we will explore the use of more modali-
ties, such as audio and video, for enriching the side information.
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